Introduction to jagsUI

Installing JAGS

In addition to installing the jagsUI package, we also need to separately install the free JAGS software, which you can download here.

Once that’s installed, load the jagsUI library:

library(jagsUI)

Typical jagsUI Workflow

  1. Organize data into a named list
  2. Write model file in the BUGS language
  3. Specify initial MCMC values (optional)
  4. Specify which parameters to save posteriors for
  5. Specify MCMC settings
  6. Run JAGS
  7. Examine output

1. Organize data

We’ll use the longley dataset to conduct a simple linear regression. The dataset is built into R.

data(longley)
head(longley)
#      GNP.deflator     GNP Unemployed Armed.Forces Population Year Employed
# 1947         83.0 234.289      235.6        159.0    107.608 1947   60.323
# 1948         88.5 259.426      232.5        145.6    108.632 1948   61.122
# 1949         88.2 258.054      368.2        161.6    109.773 1949   60.171
# 1950         89.5 284.599      335.1        165.0    110.929 1950   61.187
# 1951         96.2 328.975      209.9        309.9    112.075 1951   63.221
# 1952         98.1 346.999      193.2        359.4    113.270 1952   63.639

We will model the number of people employed (Employed) as a function of Gross National Product (GNP). Each column of data is saved into a separate element of our data list. Finally, we add a list element for the number of data points n. In general, elements in the data list must be numeric, and structured as arrays, matrices, or scalars.

jags_data <- list(
  gnp = longley$GNP,
  employed = longley$Employed,
  n = nrow(longley)
)

2. Write BUGS model file

Next we’ll describe our model in the BUGS language. See the JAGS manual for detailed information on writing models for JAGS. Note that data you reference in the BUGS model must exactly match the names of the list we just created. There are various ways to save the model file, we’ll save it as a temporary file.

# Create a temporary file
modfile <- tempfile()

#Write model to file
writeLines("
model{

  # Likelihood
  for (i in 1:n){ 
    # Model data
    employed[i] ~ dnorm(mu[i], tau)
    # Calculate linear predictor
    mu[i] <- alpha + beta*gnp[i]
  }
    
  # Priors
  alpha ~ dnorm(0, 0.00001)
  beta ~ dnorm(0, 0.00001)
  sigma ~ dunif(0,1000)
  tau <- pow(sigma,-2)

}
", con=modfile)

3. Initial values

Initial values can be specified as a list of lists, with one list element per MCMC chain. Each list element should itself be a named list corresponding to the values we want each parameter initialized at. We don’t necessarily need to explicitly initialize every parameter. We can also just set inits = NULL to allow JAGS to do the initialization automatically, but this will not work for some complex models. We can also provide a function which generates a list of initial values, which jagsUI will execute for each MCMC chain. This is what we’ll do below.

inits <- function(){  
  list(alpha=rnorm(1,0,1),
       beta=rnorm(1,0,1),
       sigma=runif(1,0,3)
  )  
}

4. Parameters to monitor

Next, we choose which parameters from the model file we want to save posterior distributions for. We’ll save the parameters for the intercept (alpha), slope (beta), and residual standard deviation (sigma).

params <- c('alpha','beta','sigma')

5. MCMC settings

We’ll run 3 MCMC chains (n.chains = 3).

JAGS will start each chain by running adaptive iterations, which are used to tune and optimize MCMC performance. We will manually specify the number of adaptive iterations (n.adapt = 100). You can also try n.adapt = NULL, which will keep running adaptation iterations until JAGS reports adaptation is sufficient. In general you do not want to skip adaptation.

Next we need to specify how many regular iterations to run in each chain in total. We’ll set this to 1000 (n.iter = 1000). We’ll specify the number of burn-in iterations at 500 (n.burnin = 500). Burn-in iterations are discarded, so here we’ll end up with 500 iterations per chain (1000 total - 500 burn-in). We can also set the thinning rate: with n.thin = 2 we’ll keep only every 2nd iteration. Thus in total we will have 250 iterations saved per chain ((1000 - 500) / 2).

The optimal MCMC settings will depend on your specific dataset and model.

6. Run JAGS

We’re finally ready to run JAGS, via the jags function. We provide our data to the data argument, initial values function to inits, our vector of saved parameters to parameters.to.save, and our model file path to model.file. After that we specify the MCMC settings described above.

out <- jags(data = jags_data,
            inits = inits,
            parameters.to.save = params,
            model.file = modfile,
            n.chains = 3,
            n.adapt = 100,
            n.iter = 1000,
            n.burnin = 500,
            n.thin = 2)
# 
# Processing function input....... 
# 
# Done. 
#  
# Compiling model graph
#    Resolving undeclared variables
#    Allocating nodes
# Graph information:
#    Observed stochastic nodes: 16
#    Unobserved stochastic nodes: 3
#    Total graph size: 74
# 
# Initializing model
# 
# Adaptive phase, 100 iterations x 3 chains 
# If no progress bar appears JAGS has decided not to adapt 
#  
# 
#  Burn-in phase, 500 iterations x 3 chains 
#  
# 
# Sampling from joint posterior, 500 iterations x 3 chains 
#  
# 
# Calculating statistics....... 
# 
# Done.

We should see information and progress bars in the console.

If we have a long-running model and a powerful computer, we can tell jagsUI to run each chain on a separate core in parallel by setting argument parallel = TRUE:

out <- jags(data = jags_data,
            inits = inits,
            parameters.to.save = params,
            model.file = modfile,
            n.chains = 3,
            n.adapt = 100,
            n.iter = 1000,
            n.burnin = 500,
            n.thin = 2,
            parallel = TRUE)

While this is usually faster, we won’t be able to see progress bars when JAGS runs in parallel.

7. Examine output

Our first step is to look at the output object out:

out
# JAGS output for model '/tmp/Rtmp553RO5/file5537c244ba1', generated by jagsUI.
# Estimates based on 3 chains of 1000 iterations,
# adaptation = 100 iterations (sufficient),
# burn-in = 500 iterations and thin rate = 2,
# yielding 750 total samples from the joint posterior. 
# MCMC ran for 0.001 minutes at time 2025-02-24 11:55:26.110996.
# 
#            mean    sd   2.5%    50%  97.5% overlap0 f  Rhat n.eff
# alpha    51.807 0.758 50.315 51.785 53.316    FALSE 1 1.001   660
# beta      0.035 0.002  0.031  0.035  0.039    FALSE 1 1.002   541
# sigma     0.721 0.143  0.499  0.704  1.045    FALSE 1 1.000   750
# deviance 33.247 2.729 30.049 32.569 39.605    FALSE 1 1.004   485
# 
# Successful convergence based on Rhat values (all < 1.1). 
# Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
# For each parameter, n.eff is a crude measure of effective sample size. 
# 
# overlap0 checks if 0 falls in the parameter's 95% credible interval.
# f is the proportion of the posterior with the same sign as the mean;
# i.e., our confidence that the parameter is positive or negative.
# 
# DIC info: (pD = var(deviance)/2) 
# pD = 3.7 and DIC = 36.965 
# DIC is an estimate of expected predictive error (lower is better).

We first get some information about the MCMC run. Next we see a table of summary statistics for each saved parameter, including the mean, median, and 95% credible intervals. The overlap0 column indicates if the 95% credible interval overlaps 0, and the f column is the proportion of posterior samples with the same sign as the mean.

The out object is a list with many components:

names(out)
#  [1] "sims.list"   "mean"        "sd"          "q2.5"        "q25"        
#  [6] "q50"         "q75"         "q97.5"       "overlap0"    "f"          
# [11] "Rhat"        "n.eff"       "pD"          "DIC"         "summary"    
# [16] "samples"     "modfile"     "model"       "parameters"  "mcmc.info"  
# [21] "run.date"    "parallel"    "bugs.format" "calc.DIC"

We’ll describe some of these below.

Diagnostics

We should pay special attention to the Rhat and n.eff columns in the output summary, which are MCMC diagnostics. The Rhat (Gelman-Rubin diagnostic) values for each parameter should be close to 1 (typically, < 1.1) if the chains have converged for that parameter. The n.eff value is the effective MCMC sample size and should ideally be close to the number of saved iterations across all chains (here 750, 3 chains * 250 samples per chain). In this case, both diagnostics look good.

We can also visually assess convergence using the traceplot function:

traceplot(out)

We should see the lines for each chain overlapping and not trending up or down.

Posteriors

We can quickly visualize the posterior distributions of each parameter using the densityplot function:

densityplot(out)

The traceplots and posteriors can be plotted together using plot:

plot(out)

We can also generate a posterior plot manually. To do this we’ll need to extract the actual posterior samples for a parameter. These are contained in the sims.list element of out.

post_alpha <- out$sims.list$alpha
hist(post_alpha, xlab="Value", main = "alpha posterior")

Update

If we need more iterations or want to save different parameters, we can use update:

# Now save mu also
params <- c(params, "mu")
out2 <- update(out, n.iter=300, parameters.to.save = params)
# Compiling model graph
#    Resolving undeclared variables
#    Allocating nodes
# Graph information:
#    Observed stochastic nodes: 16
#    Unobserved stochastic nodes: 3
#    Total graph size: 74
# 
# Initializing model
# 
# Adaptive phase..... 
# Adaptive phase complete 
#  
# No burn-in specified 
#  
# Sampling from joint posterior, 300 iterations x 3 chains 
#  
# 
# Calculating statistics....... 
# 
# Done.

The mu parameter is now in the output:

out2
# JAGS output for model '/tmp/Rtmp553RO5/file5537c244ba1', generated by jagsUI.
# Estimates based on 3 chains of 1300 iterations,
# adaptation = 100 iterations (sufficient),
# burn-in = 1000 iterations and thin rate = 2,
# yielding 450 total samples from the joint posterior. 
# MCMC ran for 0 minutes at time 2025-02-24 11:55:26.982132.
# 
#            mean    sd   2.5%    50%  97.5% overlap0 f  Rhat n.eff
# alpha    51.856 0.823 50.265 51.872 53.529    FALSE 1 1.006   450
# beta      0.035 0.002  0.031  0.035  0.039    FALSE 1 1.002   450
# sigma     0.729 0.164  0.491  0.708  1.103    FALSE 1 1.027   118
# mu[1]    59.997 0.366 59.272 59.995 60.722    FALSE 1 1.011   450
# mu[2]    60.871 0.322 60.235 60.862 61.483    FALSE 1 1.011   450
# mu[3]    60.823 0.324 60.182 60.815 61.442    FALSE 1 1.011   450
# mu[4]    61.745 0.281 61.183 61.742 62.300    FALSE 1 1.012   450
# mu[5]    63.287 0.219 62.824 63.282 63.740    FALSE 1 1.010   336
# mu[6]    63.914 0.200 63.496 63.914 64.295    FALSE 1 1.008   294
# mu[7]    64.553 0.188 64.171 64.558 64.917    FALSE 1 1.006   267
# mu[8]    64.474 0.189 64.090 64.482 64.844    FALSE 1 1.006   269
# mu[9]    65.667 0.183 65.305 65.651 66.054    FALSE 1 1.006   260
# mu[10]   66.422 0.193 66.060 66.402 66.834    FALSE 1 1.006   288
# mu[11]   67.241 0.214 66.850 67.220 67.719    FALSE 1 1.006   346
# mu[12]   67.303 0.216 66.911 67.284 67.784    FALSE 1 1.006   352
# mu[13]   68.629 0.267 68.164 68.599 69.205    FALSE 1 1.004   450
# mu[14]   69.320 0.298 68.792 69.295 69.961    FALSE 1 1.003   450
# mu[15]   69.862 0.324 69.269 69.840 70.556    FALSE 1 1.002   450
# mu[16]   71.138 0.390 70.407 71.128 71.948    FALSE 1 1.001   450
# deviance 33.617 3.135 30.118 32.821 42.398    FALSE 1 1.013   262
# 
# Successful convergence based on Rhat values (all < 1.1). 
# Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
# For each parameter, n.eff is a crude measure of effective sample size. 
# 
# overlap0 checks if 0 falls in the parameter's 95% credible interval.
# f is the proportion of the posterior with the same sign as the mean;
# i.e., our confidence that the parameter is positive or negative.
# 
# DIC info: (pD = var(deviance)/2) 
# pD = 4.9 and DIC = 38.515 
# DIC is an estimate of expected predictive error (lower is better).

This is a good opportunity to show the whiskerplot function, which plots the mean and 95% CI of parameters in the jagsUI output:

whiskerplot(out2, 'mu')